Package: sit (via r-universe)

September 29, 2024

Type Package

Title Analyse Mark-Release-Recapture Data from Sterile Insect Technique (SIT) Field Experiments

Version 1.1.2.9015

Description Import field data about the study design such as the location and types of adult and egg traps, the release events, the trap surveys and the egg hatches. Provide functions to compute and plot various parameters of interest concerning competitiveness of sterile males, dispersal behaviour, survival rates and density of the wild male population.

License GPL-3

Encoding UTF-8

Depends R (>= 4.0)

Imports cli, dm, glue, rlang, sf, units, tidyr, knitr

Suggests spelling, tmap, covr, DiagrammeR, DiagrammeRsvg, dplyr, rmarkdown, testthat (>= 3.0.0), tibble, kableExtra, ggplot2

LazyData true

URL https://umr-astre.pages.mia.inra.fr/sit,

https://forgemia.inra.fr/umr-astre/sit

BugReports https://forgemia.inra.fr/umr-astre/sit/issues

VignetteBuilder knitr

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.0

Config/testthat/edition 3

Language en-GB

Repository https://cirad-astre.r-universe.dev

RemoteUrl https://forgemia.inra.fr/umr-astre/sit

RemoteRef HEAD

RemoteSha 5565f8063e4f5a93d20279822f9538b4cd371e70

dispersal

Contents

dispersal	2
fake_sit	4
fertility_rate	5
fried_index	5
inverse_radial_density	7
lincoln_index	8
sit	9
sit_adult_surveys	0
sit_competitiveness	2
sit_diffusion	3
sit_egg_surveys	4
sit_flight_range	6
sit_mdt 1	7
sit_prototype	8
sit_revents	8
sit_survival	0
sit_traps	1
sit_trap_types	3
sit_wild_size	4
sterile_wild_male_ratio	5
survey_ages	6
2	7

Index

dispersal

Dispersal data

Description

Compute a data.frame with dispersal information. I.e. age and distance from release point for each capture. Possibly adjusting for inhomogeneous trap arrangement.

Usage

```
dispersal(
    x,
    spatial_adjustment = TRUE,
    following_releases,
    following_days,
    species = NULL
)
```

dispersal

Arguments

х

A sit object.

species variable.

spatial_adjustment

Logical. Whether to adjust observations to account for a irregular spatial arrangement of traps.

following_releases

	A sit_release object with a subset of release events or missing (default) for all point release events. Use in combination with following_days to filter surveys of the target populations within a given number of days after release. Note that counts of wild populations will always be included in the results with a value of NA in pop_col.
llowing_days	Integer or missing (default). Number of days after releases to return, if following_releases is not missing.
ecies	a character vector of species to be returned. Defaults to NULL, which ignores the

Details

fo

sp

By default, the function uses all adult surveys in the sit area of captured individuals released from **point** releases. You can control this behaviour by passing a custom sit_revents object in following_releases.

Note that the spatial adjustment is performed with the provided traps. Thus, beware of using a subset of traps only.

Value

A data.frame with dispersal data. Specifically, for each survey of sterile males, their population (colour), the trap, the age, the capture size n, the spatial weights w and the distance dist_m from the release point, in metres.

```
dispersal(sit_prototype)
```

```
yellow_release <- sit_revents(sit_prototype)[1,]
dispersal(
    sit_prototype,
    following_releases = yellow_release,
    following_days = 7L
)</pre>
```

fake_sit

Description

A set of minimal data.frames with fake egg and adult surveys, point and areal release events, traps and trap-types.

Usage

fake_adults

fake_eggs

fake_rpoints

fake_rareal

fake_traps

fake_trap_types

Format

A set of 6 data.frames, some of which also sf POINT objects.

- **fake_adults** A data.frame with 5 records from 4 days, 3 traps and 3 sterile populations + 1 wild population. The trap codes are consistent with adult traps in fake_traps.
- **fake_eggs** A data.frame with 4 records from 3 days and 2 traps, one from the sit and one from the control areas. The trap codes are consistent with egg traps in fake_traps.
- fake_rpoints A sf table with 3 point releases from 2 sites.
- fake_rareal A data.frame with 2 areal releases.
- **fake_traps** A sf table of points with 5 traps of different types. Four in the sit area and one ovitrap in the control area.

fake_trap_types A data.frame with a minimal trap type specification.

An object of class data. frame with 4 rows and 5 columns.

An object of class sf (inherits from data.frame) with 3 rows and 4 columns.

An object of class data. frame with 2 rows and 3 columns.

An object of class sf (inherits from data.frame) with 5 rows and 4 columns.

An object of class data. frame with 1 rows and 3 columns.

Source

Manually generated for testing purposes.

fertility_rate Fertility rate

Description

Observed fertility rate from egg surveys.

Usage

fertility_rate(x, species = NULL, pool = FALSE)

Arguments

Х	Either a sit or a sit_egg_surveys object.
species	Character. Filter results for a given species or ignore the species if missing.
pool	Logical. If TRUE pools fertile and sterile counts from all traps and survey dates.
	Otherwise (default) yields results by trap and survey date.

Details

The sit method uses all egg surveys in the study. For a sit object x, fertility_rate(x) is thus equivalent to fertility_rate(sit_egg_surveys(x)).

Value

If pool = TRUE, a number. Otherwise, a data.frame with counts of fertile and sterile eggs by trap and survey period, with the corresponding proportion of fertile eggs.

Examples

fertility_rate(sit_prototype, pool = TRUE)

fried_index Fried index

Description

Index of the mating competitiveness of sterile males relative to wild males.

Usage

```
fried_index(
   sterile_wild_mr,
   natural_fertility,
   sit_fertility,
   residual_fertility
)
```

Arguments

sterile_wild_mr
Non-negative number. Ratio of sterile to wild males in the target population.
natural_fertility
Number between 0 and 1. Proportion of fertile eggs in a natural (wild) population.
sit_fertility
Number between 0 and 1. Proportion of fertile eggs in the target population.
residual_fertility
Number between 0 and 1. Proportion of fertile eggs in a completely sterile
population. Also called *residual* fertility.

Details

The competitiveness γ of the sterile male individuals is defined as their relative capacity to mate with a wild female, compared to a wild male.

Thus, in a homogeneously mixed population with M_s sterile males and M_w wild males, the probability that a mating occurs with a sterile individual is

$$p_s = \frac{\gamma M_s}{M_w + \gamma M_s} = \frac{\gamma R_{sw}}{1 + \gamma R_{sw}}$$

where $R_{sw} = M_s/M_w$ is the sterile-wild male ratio. At a given sterile-wild male ratio $R_{sw} = M_s/M_w$ we observe a fertility rate H_s in the field.

Assuming a residual fertility rate H_{rs} for sterile males and a natural fertility rate H_w for wild males, the observed fertility rate H_s in the field is:

$$H_{s} = p_{s}H_{rs} + (1 - p_{s})H_{w} = \frac{\gamma R_{sw}}{1 + \gamma R_{sw}}H_{rs} + \frac{1}{1 + \gamma R_{sw}}H_{w}.$$

Value

Non-negative number.

```
fried_index(
   sterile_wild_mr = 0.3,
   natural_fertility = .9,
   sit_fertility = .71,
   residual_fertility = .05
)
```

inverse_radial_density

Inverse radial density weights

Description

Compute a vector of weights for a set of elements (traps), to account for inhomogeneous spatial distribution relative to a reference (release) point.

Usage

```
inverse_radial_density(x)
```

Arguments

Х

Numeric vector of non-negative distances.

Details

The *radial density* of traps (i.e. number of traps in a ring (r, r+dr), divided by the surface area of the ring) is proportional to the radius under a spatially homogeneous distribution of traps, with a proportionality constant of $2/R^2$, where R is the maximum radius.

This function performs a kernel-density estimation of the radial density of the given set of traps, using a boundary correction to avoid edge effects, and returns weights calculated as the inverse of the relative density, with respect to the expected density under homogeneity.

These weights can be used to adjust trap counts by spatial arrangement, in situations where the relationship between counts and the distance from the release point is relevant.

Value

A inverse_radial_density object, which is a numeric vector of weights (one for each trap in x, in the same order), with a set of attributes used in the plot method.

```
## Homogeneous points
set.seed(20211129)
radial_dists_homog <- sqrt(runif(50)^2 + runif(50)^2)
ird <- inverse_radial_density(radial_dists_homog)
plot(ird)</pre>
```

lincoln_index Lincoln index

Description

Estimate the size of the wild-male population.

Usage

lincoln_index(released, survival_rate, age, marked_recaptured, wild_catch)

Arguments

released	Numeric. Number of sterile males released.	
survival_rate	Numeric. Estimated survival rate.	
age	Numeric. Number of days since release.	
marked_recaptured		
	Numeric. Number of re-captured sterile males.	
wild_catch	Numeric. Number of wild males captured.	

Details

A simple estimate is obtained as follows (Thompson 2012, Ch. 18). Let the total captures at a day \$t\$ be the sum of \$m_t\$ marked and \$n_t\$ wild mosquitoes. Assuming that the proportion of marked individuals in the sample equals that in the population of size \$P\$:

$$\frac{m_t}{m_t + n_t} = \frac{M_t}{M_t + P},$$

where $M_t = R, S^a_t$ is the number of marked individuals captured at time t, with R the number of released adults, SS the daily survival rate and a_t the number of days since release (*age*). I.e., the number of marked individuals at time t is the remaining number from those released that survived for a_t days.

The **Lincoln Index** (*a.k.a.* the **Petersen estimator**) has been used as a simple estimate of the wild **male** population size, assuming that the survival rate of an individual remains constant. Here we use a *modified* version that corrects for small samples and compensates for daily survival.

$$P_t = R S^{a_t} (n_t + 1) / (m_t + 1).$$

The values of \$R\$, \$n_t\$, \$m_t\$ and \$t\$ can be gathered from the adult surveys data. The calculation required the estimation of the survival rate \$S\$.

References

Thompson, Steven K. 2012. Sampling. 3rd ed. Wiley Series in Probability and Statistics. Hoboken, N.J.: Wiley.

sit

Examples

```
lincoln_index(
  released = 1e4,
  survival_rate = .80,
  age = 1,
  marked_recapture = 15,
  wild_catch = 5
)
```

sit

Build a sit object

Description

Gathers data about traps, release events and field survey data into a relational data model.

Usage

```
sit(traps, release_events, adult_surveys = NULL, egg_surveys = NULL)
```

Arguments

traps	A sit_traps object built with sit_traps().
release_events	A sit_revents object built with sit_revents().
adult_surveys	A sit_adult_surveys object built with sit_adult_surveys().
egg_surveys	A sit_egg_surveys object built with sit_egg_surveys().

Value

A sit object that can be queried with functions from the package.

```
sit(
    sit_traps(fake_traps),
    c(sit_revents(fake_rpoints), sit_revents(fake_rareal)),
    sit_adult_surveys(fake_adults),
    sit_egg_surveys(fake_eggs)
)
```

Description

Import survey field data from adult traps, or retrieve the data from a sit object.

Usage

```
sit_adult_surveys(x, ...)
## S3 method for class 'data.frame'
sit_adult_surveys(
 х,
  trap = "trap",
  type = "type",
  survey = "survey",
  activation = "activation",
 duration = "duration",
 population = "population",
  species = "species",
  sex = "sex",
 n = "n",
  . . .
)
## S3 method for class 'sit'
sit_adult_surveys(
 х,
 area = c("control", "sit"),
  trap_type = sit_trap_types(x)$label,
  following_releases,
  following_days,
  species = NULL,
  . . .
)
```

Arguments

х	A data.frame with field survey data in tidy format.
• • •	Used to pass arguments to specific method.
trap	Identification code of the trap. This is the user's code corresponding to the id argument in sit_traps().
type	Character string. Trap type.
survey	Character. Date and optionally the time of the survey. See details on the date format.

activation	Character. Date and optionally the time of the survey activation. See details on the date format. Either activation or duration are required.
duration	Numeric. Number of days (integer or fractional) that the trap has been function- ing.
population	Character. Either wild or any of the colour codes in the release events imported with sit_revents().
species	Character. Only required if the counts of wild individuals are further categorised by species. Make sure to use the same nomenclature as in sit_revents(). In the extraction method, a character vector of species to be returned. Defaults to NULL, which ignores the species variable.
sex	Character. Either male or female.
n	Mandatory. An integer number of the surveyed individuals in the corresponding group.
area	Character vector. Either control, sit or both (default).
trap_type	Character vector. Any subset of unique(sit_trap_types(x)\$label).
following_relea	ises
	A sit_release object with a subset of release events or missing (default) for all release events. Use in combination with following_days to filter surveys of the target populations within a given number of days after release. Note that counts of wild populations will always be included in the results with a value of NA in pop_col.
following_days	Integer or missing (default). Number of days after releases to return, if following_releases is not missing.

Details

The argument type is mandatory only if needed to uniquely identify the trap (i.e., more than one adult trap type is declared with sit_trap_types() and the same code has been used for traps of different types). If the user used unique codes for each trap, which will be checked internally, this is redundant and will be ignored in any case.

Dates must be provided in the RFC 3339 format (a variation of the ISO 8601 format), i.e., 2021-12-31 or 2019-11-23 15:00.

Value

A object of class sit_adult_surveys which can be used in sit().

Methods (by class)

- data.frame: Imports field survey data from adult traps.
- sit: Retrieve adult survey data, possibly filtering results.

See Also

sit()

```
Other importing: sit_egg_surveys(), sit_revents(), sit_traps()
```

Examples

```
ad_surv <- data.frame(
    trap = 1:3,
    survey = c("2021-04-01", "2021-08-21", "2021-08-21"),
    duration = rep(7L, 3),
    population = c("blue", "yellow", "yellow"),
    species = "aeg",
    sex = c("male", "male", "female"),
    n = 1:3
)
sit_adult_surveys(ad_surv)</pre>
```

sit_competitiveness Estimate competitiveness of sterile males

Description

Estimate competitiveness of sterile males

Usage

```
sit_competitiveness(
    x,
    following_releases = sit_revents(x, type = "areal"),
    following_days = 7,
    residual_fertility = 0.01,
    species = NULL
)
```

Arguments ×

A sit object.

following_releases

A sit_release object with a subset of release events or missing (default) for all release events. Use in combination with following_days to filter surveys of the target populations within a given number of days after release. Note that counts of wild populations will always be included in the results with a value of NA in pop_col.

following_days Integer or missing (default). Number of days after releases to return, if following_releases is not missing.

residual_fertility

Numeric. Default: 0.05.

species Character. Filter results for a given species or ignore the species if missing.

Value

A numeric value.

12

sit_diffusion

Examples

sit_competitiveness(sit_prototype)

sit_diffusion Diffusion

Description

Diffusion

Usage

```
sit_diffusion(
    x,
    pool = FALSE,
    spatial_adjustment = TRUE,
    following_releases,
    following_days,
    species = NULL
)
```

Arguments

х	A sit object.
pool	Logical. Whether to aggregate data from released populations.
spatial_adjustm	lent
	Logical. Whether to adjust observations to account for a irregular spatial arrangement of traps.
following_relea	ses
	A sit_release object with a subset of release events or missing (default) for all point release events. Use in combination with following_days to filter surveys of the target populations within a given number of days after release. Note that counts of wild populations will always be included in the results with a value of NA in pop_col.
following_days	Integer or missing (default). Number of days after releases to return, if following_releases is not missing.
species	a character vector of species to be returned. Defaults to NULL, which ignores the species variable.

Value

A named numeric vector with one value for each requested level.

```
(diff_prototype <- sit_diffusion(sit_prototype))
plot(diff_prototype)</pre>
```

sit_egg_surveys

Description

Import survey field data from egg traps, or retrieve the data from a sit object.

Usage

```
sit_egg_surveys(x, ...)
## S3 method for class 'data.frame'
sit_egg_surveys(
 х,
 trap = "trap",
 type = "type",
  survey = "survey",
 activation = "activation",
 duration = "duration",
  species = "species",
 fertile = "fertile",
 n = "n",
  . . .
)
## S3 method for class 'sit'
sit_egg_surveys(
 х,
 area = c("control", "sit"),
  trap_type = sit_trap_types(x)$label,
  following_releases,
  following_days,
  species = NULL,
  . . .
)
```

Arguments

х	A data.frame with field survey data in tidy format.
	Used to pass arguments to specific method.
trap	Identification code of the trap. This is the user's code corresponding to the id argument in sit_traps().
type	Character string. Trap type.
survey	Character. Date and optionally the time of the survey. See details on the date format.

sit_egg_surveys

activation	Character. Date and optionally the time of the survey activation. See details on the date format. Either activation or duration are required.	
duration	Numeric. Number of days (integer or fractional) that the trap has been function- ing.	
species	Character.	
fertile	Logical. Whether n represents counts of fertile eggs (TRUE) of sterile eggs (FALSE).	
n	Mandatory. An integer number of the surveyed individuals in the corresponding group.	
area	Character vector. Either control, sit or both (default).	
trap_type	Character vector. Any subset of unique(sit_trap_types(x)\$label).	
following_releases		
	A sit_release object with a subset of release events or missing (default) for all release events. Use in combination with following_days to filter surveys of the target populations within a given number of days after release. Note that counts of wild populations will always be included in the results with a value of NA in pop_col.	
following_days	Integer or missing (default). Number of days after releases to return, if following_releases is not missing.	

Details

The argument type is mandatory only if needed to uniquely identify the trap (i.e., more than one egg trap type is declared with sit_trap_types() and the same code has been used for traps of different types). If the user used unique codes for each trap, which will be checked internally, this is redundant and will be ignored in any case.

Dates must be provided in the RFC 3339 format (a variation of the ISO 8601 format), i.e., 2021-12-31 or 2019-11-23 15:00.

Value

A object of class sit_egg_surveys which can be used in sit().

Methods (by class)

- data.frame: Imports field survey data from egg traps.
- sit: Retrieve egg survey data, possibly filtering results.

See Also

sit()

```
Other importing: sit_adult_surveys(), sit_revents(), sit_traps()
```

Examples

```
egg_surv <- data.frame(
    trap = 1:3,
    survey = c("2021-04-01", "2021-08-21", "2021-08-21"),
    duration = rep(7L, 3),
    fertile = c(TRUE, FALSE, TRUE),
    n = 1:3
)
sit_egg_surveys(egg_surv)</pre>
```

sit_flight_range Flight Range

Description

Flight Range

Usage

```
sit_flight_range(
    x,
    pool = FALSE,
    levels = c(50, 90),
    spatial_adjustment = TRUE,
    following_releases,
    following_days,
    species = NULL
)
```

Arguments

х	A sit object.
pool	Logical. Whether to aggregate data from released populations.
levels	Numeric vector with values between 0 and 100. Requested levels of flight range, in percentage.
<pre>spatial_adjustm</pre>	nent
	Logical. Whether to adjust observations to account for a irregular spatial arrangement of traps.
following_relea	ises
	A sit_release object with a subset of release events or missing (default) for all point release events. Use in combination with following_days to filter surveys of the target populations within a given number of days after release. Note that counts of wild populations will always be included in the results with a value of NA in pop_col.
following_days	Integer or missing (default). Number of days after releases to return, if following_releases is not missing.
species	a character vector of species to be returned. Defaults to NULL, which ignores the species variable.

16

sit_mdt

Value

A named numeric vector with one value for each requested level.

Examples

sit_flight_range(sit_prototype)

sit_mdt

Mean Distance Travelled and Mean Dispersal Distance

Description

Mean Distance Travelled and Mean Dispersal Distance

Usage

```
sit_mdt(
    x,
    by = c("population", "age"),
    spatial_adjustment = TRUE,
    following_releases,
    following_days,
    species = NULL
)
```

Arguments

x	A sit object.
by	Character vector. Either 'population', or 'age', both (default), or NULL.
spatial_adjustm	nent
	Logical. Whether to adjust observations to account for a irregular spatial arrangement of traps.
following_relea	ses
	A sit_release object with a subset of release events or missing (default) for all point release events. Use in combination with following_days to filter surveys of the target populations within a given number of days after release. Note that counts of wild populations will always be included in the results with a value of NA in pop_col.
following_days	Integer or missing (default). Number of days after releases to return, if following_releases is not missing.
species	a character vector of species to be returned. Defaults to NULL, which ignores the species variable.

Value

By default (i.e. by = c('population', 'age')), a table with MDT computed for each released population at each *age* (i.e., number of days since release). If by is either one of the grouping variables, the results will be presented for each value of the corresponding variable. Finally, if by = NULL, all populations and ages are pooled together and the function returns a single number.

Examples

```
sit_mdt(sit_prototype)
sit_mdt(sit_prototype, by = 'population')
sit_mdt(sit_prototype, by = 'age')
sit_mdt(sit_prototype, by = NULL)
```

sit_prototype A prototypical

A prototypical sit object with fake data

Description

A sit object with realistic (but fake) data for demonstration purposes.

Usage

sit_prototype

Format

A sit object with 3 point releases, all from the same location, and 1 areal release; 21 adult and 14 traps in the study area, 7 ovitraps in a control area. All ovitraps lacking coordinates. Adult traps surveyed daily for 36 consecutive days starting the day after the first release. Ovitraps from both areas surveyed weekly.

Source

Manually generated for demonstration purposes.

sit_revents

Import or extract release events

Description

Provide a sf object with a POINT at each record corresponding to a **release point** or a data.frame for a **areal release**, specifying which variables contain the required information. Or, extract the release events used in a sit object.

18

sit_revents

Usage

```
sit_revents(x, ...)
## S3 method for class 'sf'
sit_revents(x, date = "date", colour = "colour", n = "n", species = NULL, ...)
## S3 method for class 'data.frame'
sit_revents(x, date = "date", colour = "colour", n = "n", species = NULL, ...)
## S3 method for class 'sit_revents'
c(...)
## S3 method for class 'sit'
sit_revents(x, type = c("point", "areal"), ...)
```

Arguments

x	Object of class sf with POINT elements to be <i>imported</i> , or a data.frame with information about areal releases, or object of class sit to <i>extract</i> release events from.
	Used to pass arguments to specific method.
date	Character string representing a date and optionally the time, in the RFC 3339 format (a variation of the ISO 8601 format), i.e., 2021-12-31 or 2019-11-23 15:00.
colour	Character string. Colour of the release.
n	Numeric. Natural number. Number of individuals released.
species	Optional character. Released species.
type	Character vector. Which <i>types</i> of release events to retrieve. Either point or areal or both (default).

Value

A object of class sit_revents which can be used in sit(). sit_revents objects can be concatenated together with c(), in order to import a mixture of point and areal releases into a sit object. See examples.

Methods (by class)

- sf: Imports point release data.
- data.frame: Imports areal release data.
- sit_revents: Concatenate release events.
- sit: Extracts release events.

See Also

sit()

```
Other importing: sit_adult_surveys(), sit_egg_surveys(), sit_traps()
```

Examples

```
point_releases <- sit_revents(</pre>
  sf::st_as_sf(
    data.frame(
     x = 1:3,
      y = 3:1,
      date = c("2019-11-25", "2019-12-01", "2019-12-13"),
      colour = c("yellow", "red", "blue"),
      n = 1e4
    ),
    coords = c("x", "y")
  )
)
areal_release <- sit_revents(</pre>
 data.frame(
    x = 1, y = 1,
    date = "2019-12-21",
    colour = "pink",
    n = 1e4
 )
)
(c(point_releases, areal_release)) # also a `sit_revent` object
```

|--|

Description

Compute the *Probability of Daily Survival* (PDS), the *Average Life Expectancy* ALE, *Recapture Rate* RR, *Survival Rate* SR), by population (by default, unless pool = TRUE)

Usage

```
sit_survival(
    x,
    pool = FALSE,
    spatial_adjustment = TRUE,
    following_releases,
    following_days,
    species = NULL
}
```

)

Arguments

x A sit object.

20

sit_traps

pool	Logical. Whether to aggregate data from released populations.	
<pre>spatial_adjustm</pre>	nent	
	Logical. Whether to adjust observations to account for a irregular spatial arrangement of traps.	
following_relea	ases	
	A sit_release object with a subset of release events or missing (default) for all point release events. Use in combination with following_days to filter surveys of the target populations within a given number of days after release. Note that counts of wild populations will always be included in the results with a value of NA in pop_col.	
following_days	Integer or missing (default). Number of days after releases to return, if following_releases is not missing.	
species	a character vector of species to be returned. Defaults to NULL, which ignores the species variable.	

Value

A sit_survival object, which is a data.frame with additional attributes which can be plotted.

Examples

```
(surv_prototype <- sit_survival(sit_prototype))
plot(surv_prototype)</pre>
```

sit_traps

Import or extract trap information

Description

Provide a sf object with a POINT at each record corresponding to a trap location, specifying which variables contain the required information. Or define a set of traps without spatial coordinates. Or, extract the trap data used in a sit object.

Usage

```
sit_traps(x, ...)
## S3 method for class 'sf'
sit_traps(
    x,
    id = "id",
    type = "type",
    area = "area",
    label,
    trap_types = sit_trap_types(),
    ...
```

```
)
## S3 method for class 'character'
sit_traps(x, type, area, trap_types = sit_trap_types(), ...)
## S3 method for class 'numeric'
sit_traps(x, ...)
## S3 method for class 'sit_traps'
c(...)
## S3 method for class 'sit'
sit_traps(
    x,
    type = sit_trap_types(x)$label,
    stage = unique(sit_trap_types(x)$stage),
    area = unique(x$traps$area),
    ...
)
```

Arguments

x	Object of class sf with POINT elements to be <i>imported</i> , or a character-coerced vector <i>trap codes</i> to be defined, or an object of class sit to <i>extract</i> trap information from.
	Used to pass arguments to specific method.
id	Character. Variable name with a custom code for the trap. Jointly with type, identifies the trap uniquely.
type	Character. Variable name with valid values of trap types (i.e., any of trap_types\$label). For the extraction method, a character vector of trap types to filter upon.
area	Character. Variable name with values either control or sit. For the extraction method, a character vector of areas to filter upon.
label	Optional character. Variable name with custom text associated to the traps.
trap_types	Table of trap types, created with sit_trap_types().
stage	Character vector of stages (i.e., adult or egg) to filter upon extraction.

Value

A object of class sit_traps which can be used in sit().

Methods (by class)

- sf: Imports spatialised trap data
- character: Imports non-spatialised trap data
- numeric: Imports non-spatialised trap data
- sit_traps: Combine traps.
- sit: Extracts trap data

sit_trap_types

See Also

sit()

Other importing: sit_adult_surveys(), sit_egg_surveys(), sit_revents()

Examples

```
## Build spatialised traps from a `sf` object
traps_sf <- sf::st_as_sf(</pre>
 data.frame(
   x = 1:3,
   y = 3:1,
   "Trap.Id" = letters[1:3],
   Type = "BGS",
   area = "sit"
 ),
 coords = c("x", "y")
)
sit_traps(traps_sf, id = "Trap.Id", type = "Type", area = "area")
## Build non-spatialised traps from a vector of codes
sit_traps(paste0("C", 1:5), area = 'control', type = 'OVT')
## Retrieve traps in a `sit` object
## sit_traps(sit_prototype)
```

```
sit_trap_types Import or extract trap types
```

Description

Extracts the table of trap types used in a sit experiment, or defines a table of trap types.

Usage

```
sit_trap_types(x)
## S3 method for class 'sit'
sit_trap_types(x)
## S3 method for class 'data.frame'
sit_trap_types(x)
```

Arguments

```
Х
```

A sit object, a data.frame-like object or empty.

Details

Returns the table of trap types used in the sit object x.

Defines a table of trap types by passing a data.frame with variables name, label, stage (either egg or adult) and optionally description. Any other variable is ignored with a warning.

Returns the default table of trap types by calling sit_trap_types() without any argument.

Check the default trap types with sit_trap_types(). You can store the table into an object and make edits as for a regular data.frame. E.g. add another trap type, or edit labels or descriptions. You can use the edited object as an input to the trap_types arguments in sit_traps().

Value

Table of trap types used in the sit experiment x. If x is a data.frame, returns it as a table of trap types after some verifications. If x is missing, returns the current table of trap types.

Methods (by class)

- sit: Extract trap data
- data.frame: Import trap data

Examples

sit_trap_types() # default trap types.

```
# Define new trap types
my_traps <- data.frame(name = "My New Trap", label = "MNT", stage = "adult")
sit_trap_types(my_traps)</pre>
```

sit_wild_size Size of the Wild Population

Description

Estimate the size of the wild population, via the Lincoln Index.

Usage

```
sit_wild_size(x, pool = FALSE, species = NULL)
```

Arguments

х	A sit object.
pool	Logical. Whether to aggregate data from released populations.
species	a character vector of species to be returned. Defaults to NULL, which ignores the
	species variable.

Details

This provides multiple estimates of the population size, one for each age \$t\$ and for each released population, which can be averaged to compute a final estimate based on all the available data.

The calculation needs to be split by released population. First, because survival rates could be different among populations, but also because the number n_t of captured wild males at a given date can be compared against the number of captured sterile males m_t at different ages.

Value

A sit_wild_size object.

Examples

sit_wild_size(sit_prototype)

sterile_wild_male_ratio

Sterile-Wild male ratio

Description

Observed ratio between sterile and wild male individuals from adult surveys.

Usage

sterile_wild_male_ratio(x, pool)

Arguments

х	Either a sit or a sit_adult_surveys object.
pool	Logical. If TRUE pools sterile and wild counts from all traps and survey dates.
	Otherwise (default) yields results by trap and survey date.

Details

The sit method uses all adult surveys from the study (sit) area. For a sit object x, sterile_wild_male_ratio(x) is thus equivalent to sterile_wild_male_ratio(sit_adult_surveys(x, area = 'sit')).

Value

If pool = TRUE, a number. Otherwise, a data.frame with counts of sterile and wild males by trap and survey period, with the corresponding ratio.

```
sterile_wild_male_ratio(sit_prototype, pool = TRUE)
```

survey_ages

Description

Compute the age (i.e. number of days since release to capture) of released sterile males.

Usage

```
survey_ages(surveys, releases)
```

Arguments

surveys	A sit_adult_surveys object.
releases	A sit_revents object with target releases.

Value

A data.frame, with a similar structure as surveys but with captures of the sterile males from the target releases only, and with additional variables for the release date and the age of the individual at the moment of the survey in number of days.

```
head(
    survey_ages(sit_adult_surveys(sit_prototype), sit_revents(sit_prototype))
)
```

Index

*, when there are no observations of captures in sit_mdt, 17 * Assuming that mosquitoes fly randomly (Brownian motion), their dispersion sit_diffusion, 13 * Compute the Mean Distance Travelled (MDT) realised in a SIT experiment. sit_mdt, 17 * Computes the Fried Index, which estimates the competitiveness based on sit_competitiveness, 12 * Estimate the diffusion coefficient. sit_diffusion, 13 * Flight range of sterile individuals at specified levels. sit_flight_range, 16 * From which we can solve for the Diffusion coefficient by using the distances sit_diffusion, 13 * In practice, it is computed as the average distance between the traps sit_mdt, 17 * It is strongly recommended to estimate competitiveness based on surveys from sit_competitiveness, 12 * MDT estimates result in sit_mdt, 17 * MSD at a given age. sit_diffusion, 13 * The Mean Dispersal Distance (MDD) is the MDT without accounting for sit_mdt, 17 * The mean distance travelled (MDT) is the average distance travelled by all

sit_mdt, 17 * The resulting object can be plotted to see the underlying regression model. sit_diffusion, 13 * This function computes the MSD of the individuals (possibly, by population) sit_diffusion, 13 * Under this model, sit diffusion. 13 * and the release point, weighted by the number of individuals from the sit_mdt, 17 * areal releases. The calculation requires the estimation of the sterile-wild sit_competitiveness, 12 * at the different observed ages, and derives **\$D\$** as the regression slope. sit_diffusion, 13 * behaviour for that location, season and weather conditions. sit_diffusion, 13 * concentration to regions of low concentration, with a magnitude that is sit_diffusion, 13 * datasets fake_sit, 4 sit_prototype, 18 * estimates sit_competitiveness, 12 sit_diffusion, 13 sit_flight_range, 16 sit_mdt, 17 * follow sit_diffusion, 13 * from the release point at which sterile males were captured to estimated the

sit_diffusion, 13 * importing sit_adult_surveys, 10 sit_egg_surveys, 14 sit_revents, 18 sit_mdt, 17 sit_traps, 21 * individuals, weighted by the relative density of traps. sit_mdt, 17 * inhomogeneous arrangements of traps. See Details. sit_mdt, 17 sit_mdt, 17 * list(NaN) * sit_mdt, 17 * list(captured) sit_mdt, 17 * list(list(\\text{MSD}(t) = 4Dt.)) sit_mdt, 17 sit_diffusion, 13 * list(list(\n, \\text{MDT}_{jk} = \\sum_{i = } 1}^{n_t} w_i \\, n_{ijk} \\, d_i $\bigg \n, \sum_{i = 1}^{n_t} w_i$ $\, n_{ijk} \)$ dispersal, 2 sit_mdt, 17 list(the, list(Mean Squared Displacement), (MSD) of mosquitoes from their release fake_sit, 4 point at time \$t\$ is)) sit_diffusion, 13 fertility_rate, 5 list(list(https://en.wikipedia.org/wiki/Fick%27464aw8deft,diffusion#Fick's_first_law), list(Fick's first law)) sit_diffusion, 13 * male ratio from surveys pooled across lincoln_index, 8 traps and days, which requires a sit_competitiveness, 12 sit,9 * observed fertility rates and the sterile-wild male ratio. sit_adult_surveys, 10, 15, 19, 23 sit_competitiveness, 12 sit_competitiveness, 12 * of diffusion, which postulates that flux sit_diffusion, 13 goes from regions of high sit_egg_surveys, 11, 14, 19, 23 sit_diffusion, 13 sit_flight_range, 16 * population and age. sit_mdt, 17 sit_mdt, 17 sit_prototype, 18 * proportional to the concentration gradient sit_revents, 11, 15, 18, 23 (spatial derivative). The sit_revents(), 11 sit_diffusion, 13 sit_survival, 20

* proportionality constant is the diffusivity \$D\$ and depend of the species' sit_diffusion, 13 * released population and by the relative density of traps. * roughly homogeneous distribution of sterile males. sit competitiveness. 12 * the corresponding group. This is more likely when estimates are requested by sit_competitiveness, 12 sit_diffusion, 13 sit_flight_range, 16 c.sit_revents (sit_revents), 18 c.sit_traps(sit_traps), 21 fake_adults (fake_sit), 4 list(list(https://en.wikipedia.org/wiki/Fick%23%elagesoffateLesion#Example solution 2: Brownian particle and fake_rareal (fake_sit), 4 fake_rpoints (fake_sit), 4 fake_trap_types (fake_sit), 4 fake_traps (fake_sit), 4 inverse_radial_density,7 sit(), 11, 15, 19, 22, 23

28

INDEX

```
sit_trap_types, 23
sit_trap_types(), 11, 15, 22
sit_traps, 11, 15, 19, 21
sit_traps(), 10, 14, 24
sit_wild_size, 24
sterile_wild_male_ratio, 25
survey_ages, 26
```